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Background

The objective of this paper is to illustrate the use of experience-based development principles in
order to eliminate mission software defects prior to launch. The application context is selected
from software problems contributing to two recent NASA mission losses --  the Mars Climate
Orbiter (MCO) Mission in September 1999 and the Mars Polar Lander (MPL) Mission in
December 1999.  In the case, of MCO, the failure to achieve Martian orbit was traced to a units
error in the Small Forces software used in navigation.  The presumed cause of the MPL loss
during descent is a defect in the software responding to the touchdown sensor.  In each case, the
application is presented with the intent of demonstrating the potential synergy and effectiveness
of employing a comprehensive set of software development practices to root out defects.
Development of the Software Principles began just prior to the MCO loss, and they were
completed in June 2000. Because the MCO and MPL Loss Reports were inputs, these two
retrospective applications cannot be construed as validating the content or use of these principles.

Effective software development is dependent both on a mature development process (standards,
procedures and policies) and on the continual incorporation into the process of lessons learned
from historical projects.  These “lessons learned” are typically more detailed than general
principles of software engineering because they are idiosyncratic to each development context --
in JPL’s case, robotic missions into deep space.  It is particularly important to document
experience and incorporate it into the development process when many project managers have
limited experience in software development.   Tighter development schedules and reduced
budgets are another factor that stimulates the search for more effective ways to build quality into
the product while satisfying programmatic demands. Thus for several reasons, it was decided to
make these lessons learned more accessible to the JPL development community by 1) analyzing
key factors in recent mission successes and failures and 2) distilling the findings into concise
principles to be observed in planning and implementing a software development.

Development of Software Development Principles for Flight Systems

Stimulated by the retirement of large numbers of its senior technical staff and the concurrent
growth in the number of active projects, in 1998 the JPL Space and Earth Sciences Program
Directorate undertook an initiative to document good mission and spacecraft design practice. The
resulting document titled “ JPL D-17868, Design, Verification/Validation and Operations
Principles for Flight Systems” contained a set of concise guidance on 31 general topics (e.g.
Risk-Based Design Trade-Offs, Single Failure Tolerance/Redundancy, Critical Sequence
Telemetry Monitoring) and 28 Detailed Topics (e.g., Power-On Reset State, Slosh Dynamics,
Pyro Design and Firing Margins).  Use of these principles is intended both to prevent defect
injection and to eliminate defects that were not caught in the first instance.
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These principles are composed as a “shall statements” to emphasize their importance, and they
are called “principles” rather than “requirements” to give projects leeway in applying them.  In
the JPL culture, a principle may be modified or perhaps violated for good reason, but modifying
a requirement entails a more rigorous and formal process. Adherence is verified by

• Documenting deviations from these principles in the Project Implementation Plan (PIP)
and the Software Development Plan

• Revisiting these principles during reviews of detailed plans, requirements, designs, and
test results

The initial version of D-17868 contained a brief section titled “Software Design Margins and
Software Verification”, which has been expanded into a set of 103 software development
principles in the current version of this document.  These JPL Software Development Principles
are organized around the following ten life cycle activities, with a separate section devoted to the
special needs of flight software development:

Exhibit 1:  Content of Software Development Principles

Topic: No. of  Principles:

Systems Definition/Systems Engineering 13

Planning and Monitoring 17

Cost Estimation   4

Risk Management   3

Organization and Staffing   6

Design and Implementation 14

Integration and Test 16

Configuration Management   3

Software Acquisition   2

Product and Process Verification   4

Flight Software Development 20

Total           102
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The Software Principles are based on experience in recent flight projects -- both successes and
failures.  Primary sources were discussions with software managers, system engineers, and
developers spanning all major software-intensive mission systems, plus the findings and lessons
learned in the cited sources:

• Investigations of the two recent Mars Mission losses
• An internal study of the root causes of flight software cost growth and schedule slip in 8

current JPL missions
• Recommendations from a recent GSFC/JPL Quality Mission Software Workshop
• NASA’s Lessons Learned website.

25% of the Software Principles treat design -- i.e., they specify desirable product behaviors or
desired relationships among the components of a system or subsystem. The remaining 75% are
almost equally split between 1) planning and organization and 2) a specification of the
engineering process.  This distribution of content was not planned; it evolved in the process of
identifying and addressing the most pressing needs to introduce more disciplined development
practices.  Examples of design and engineering process principles follow:

Design Example : “The software self-test and built-in test routines shall be removable for flight.
If not removable, the test routines shall not cause flight hardware damage or interfere with the
proper execution of the flight software if tests are inadvertently executed.”

Engineering Process Example:  “Test planning and the design of test cases shall be based on the
premise that the software contains serious errors that must be detected via thorough identification
of off-nominal, implausible, and otherwise unexpected conditions arising from

- Defective software logic design
- Incorrect initialization of parameter values
- Erroneous parameter values in data input files
- Hardware failures, transient or anomalous hardware behavior, and unexpected

hardware-software interactions
- Processor resets”

The process of developing these Software Principles was iterative, with each version subject to
extensive peer review by developers, subject matter experts, line managers, and project
managers. In the early phase of development, the selection of principles was guided by an
editorial board, armed with the following evaluation criteria:

• Be relevant to JPL’s business and culture
• Make a significant difference in cost, schedule, or quality
• Omit what is widely practiced
• Be applicable to a wide spectrum of projects
• Be useful to project managers, project element managers, reviewers, and developers

After the first workshop review, the principles were baselined, and further changes were
approved by a change board. Projects in the planning and early implementation phases will be
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the initial users of these Software Principles -- Mars Exploration Rover, and Outer Planets/Solar
Probe are two examples.

Retrospective Application of Software Development Principles to Mars’98 Missions

NASA’s Mars ’98 missions were implemented in the Faster/Better/Cheaper mode, with cost
containment a major consideration.  Subsequently, NASA has modified the F/B/C philosophy to
emphasize risk management and make mission success the paramount factor. As a result,
missions currently under development are re-instituting more formality into the development
process with special attention to the detailed technical reviews that are the preferred venue for
application of much of the material in the Software Principles.

JPL managed the development and operation of both the Mars’ 98 missions -- the Mars Climate
Orbiter (MCO) and the Mars Polar Lander (MPL)The spacecraft used in the two missions were
designed and developed via a systems contract with Lockheed-Martin Astronautics (LMA).  The
development was guided by a documented process that incorporated activities meant to ensure a
quality product. Yet in each case, critical components in the mission software were flawed.
What happened?

MCO was lost during attempted insertion into Mars orbit because its actual altitude was much
lower than predicted due to a navigational error not discovered until after the fact. The root cause
of the error was the use of English units (pounds-force seconds) instead of metric units (Newton-
seconds) in the Small Forces navigation software that was used to interpret the impulses applied
to the spacecraft during periodic angular momentum desaturation (AMD) maneuvers.  The use of
metric units as well as the data formats to employ were specified in a navigation software
interface specification (SIS) published by JPL in 1996.  Although this SIS was referenced in the
Small Forces software requirements, neither the requirement to use metric units nor the
mandated data format was observed by the software developer. These errors were not caught in
the walkthroughs of Small Forces requirements, design, or code.  Nor were the errors caught in
the pre-flight tests of the MCO navigational software.  Subsequently, the error in data format was
identified and corrected, permitting attempts to reconcile the anomalous results yielded by the
navigation process with the magnitudes of the Small Forces calculated from the AMD files.
However, the accumulated errors from numerous desaturation maneuvers were so difficult to
detect that there was considerable uncertainty about the true trajectory of MCO at the time of
Mars orbit insertion.  Although a final trajectory correction was considered, it was not executed
because the required command sequence had not been baselined and thoroughly tested.

MPL was lost during the entry, descent, and landing (EDL) sequence due to presumed premature
engine shutdown. (MPL transmitted no telemetry data during descent.) The presumed fatal error
was traced to a database initialization error in the software that interrogated the touchdown
sensors and controlled descent engine shut-down.  EDL requirements specified activation of the
touchdown sensor software at 40 meters above the Martian surface, and a subsequent
requirements change specified that the transient signal generated by the touchdown sensor at the
time of landing legs deployment be ignored until the spacecraft had descended to 40 m altitude.
This mandate to ignore touchdown sensor input was not flowed down to the software
requirements, contributing to a database initialization error.  This error caused the touchdown
sensor software to store the bogus transient signal received at leg deployment and then use this
information to command descent engine shutdown when the landing sequence was initiated at 40
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m. The error in the touchdown sensor software logic was not caught in a trace of system
requirements to software requirements and thence to test scenarios and cases. It was not caught
in detailed technical reviews of software requirements, design, and code -- primarily because
knowledgeable mechanisms engineers and system engineers were not present. And this logic
error was not caught in ATLO system testing because the EDL mission sequence was not tested
from beginning to end under simulated flight conditions.

In the case of both the MCO units error and the error in the software logic controlling the MPL
descent engine shutdown, the defect was introduced in the flowdown of systems requirements to
software requirements, but the defect remained undetected because

• Design and code walkthroughs were ineffectively executed
• Design documentation did not facilitate the verification of design requirements
• System testing was not fully informed by a complete set of software requirements
• End-to-end testing and stress testing were not done effectively

Exhibit 2 summarizes the multiple opportunities to identify and correct each defect via the
application of JPL’s Software Development Principles -- beginning with planning for peer

Exhibit 2:  Application of Software Development Principles to Detect Mars Climate
Orbiter and Mars Polar Lander Software Defects

Software Development Principle MCO MPL
Planning and Monitoring
3.2.7  Joint development planning for interfacing hardware and software X
3.2.9  Identification of milestone and peer reviews X X
3.2.10 Participation of hardware engineers and operations team in reviews X
3.2.12 Comprehensive peer review of intermediate products X X
Risk Management
3.4.3  Early validation of interfaces, high-risk algorithms, and COTS X X
Design and Implementation
3.6.3  Design traced to software and mission requirements X X
3.6.4  Documented analytical basis for logic design X
3.6.6  Software logic to verify values of input and output parameters X X
Integration and Test
3.7.6  Detailed testing of mission phase transitions X
3.7.7  Testing to address Fault Tree Analysis and off-nominal hardware behavior X
3.7.9  Stress testing used to aggressively find latent defects X X
3.7.13 Trace from final system test to mission requirements X X
Software Acquisition
3.9.1  Project Implementation Plan to address management of software acquisition:

• In-process JPL review of intermediate products
• JPL participation in pre-delivery testing

X
X

X
X

Product and Process Verification
3.10.4  Acceptance test that exercises mission-critical systems X X
Flight Software
4.5  Accommodation of nominal, off-nominal/transient inputs X
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reviews and ending with pre-delivery and acceptance testing.  An “X” in Exhibit 2 denotes that
the indicated activity was either missing or ineffectively implemented. (Principle numbering
from the parent document is retained to help those who may wish to refer to that source.) Note
that systematic application of the JPL Software Development Principles would have provided 10
opportunities to catch the MCO defect and 16 opportunities to catch the MPL defect.

Summary

Because software creation is complex and subject to a variety of human error in specification,
design, and implementation, it is not surprising that serious defects were introduced into the
MCO and MPL software during development.  There were numerous opportunities for defect
identification and removal, but they must be applied systematically as an ensemble because in
practice, each is likely to be only partially effective.  This is especially important in a
development environment that is based on the philosophy, “Test as you fly, and fly as you test”.
It is hoped that codification of our mission experience as a set of Software Development
Principles will facilitate defect avoidance and detection in future missions.

The work described in this paper was performed at the Jet Propulsion Laboratory, California
Institute of Technology, under a contract with the National Aeronautics and Space
Administration.
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